The Probabilistic Estimates on the Largest and Smallest q-Singular Values of Pre-Gaussian Random Matrices
نویسندگان
چکیده
We study the q-singular values of random matrices with pre-Gaussian entries defined in terms of the `q-quasinorm with 0 < q ≤ 1. Mainly we study the decay of the lower and upper tail probabilities of the largest q-singular value s 1 , when the number of rows of the matrices becomes very large. Furthermore, we also give probabilistic estimates for the smallest q-singular value of pre-Gaussian random matrices.
منابع مشابه
The probabilistic estimates on the largest and smallest q-singular values of random matrices
Abstract. We study the q-singular values of random matrices with preGaussian entries defined in terms of the q-quasinorm with 0 < q ≤ 1. In this paper, we mainly consider the decay of the lower and upper tail probabilities of the largest q-singular value s 1 , when the number of rows of the matrices becomes very large. Based on the results in probabilistic estimates on the largest q-singular va...
متن کاملSome Bounds for the Singular Values of Matrices
Abstract We know that to estimate matrix singular values ( especially the largest and the smallest ones ) is an attractive topic in matrix theory and numerical analysis. In this note, we first provide a simple estimate for the smallest singular value σn(A) of n × n positive definite matrix A. Secondly, we obtain some simple estimates for the smallest singular value σn(A) and the largest singula...
متن کاملImproved Bounds on Restricted Isometry Constants for Gaussian Matrices
The Restricted Isometry Constants (RIC) of a matrix A measures how close to an isometry is the action of A on vectors with few nonzero entries, measured in the `2 norm. Specifically, the upper and lower RIC of a matrix A of size n ×N is the maximum and the minimum deviation from unity (one) of the largest and smallest, respectively, square of singular values of all `N k ́ matrices formed by taki...
متن کاملSingular values of Gaussian matrices and permanent estimators
We present estimates on the small singular values of a class of matrices with independent Gaussian entries and inhomogeneous variance profile, satisfying a broad-connectedness condition. Using these estimates and concentration of measure for the spectrum of Gaussian matrices with independent entries, we prove that for a large class of graphs satisfying an appropriate expansion property, the Bar...
متن کاملLower Bounds for the Smallest Singular Value of Structured Random Matrices
We obtain lower tail estimates for the smallest singular value of random matrices with independent but non-identically distributed entries. Specifically, we consider n× n matrices with complex entries of the form M = A ◦X +B = (aijξij + bij) where X = (ξij) has iid centered entries of unit variance and A and B are fixed matrices. In our main result we obtain polynomial bounds on the smallest si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010